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Eulerian shock-capturing schemes have advantages for modelling problems involving com-
plex non-linear wave structures and large deformations in solid media. Various numerical
methods now exist for solving hyperbolic conservation laws that have yet to be applied to
non-linear elastic theory. In this paper one such class of solver is examined based upon
characteristic tracing in conjunction with high-order monotonicity preserving weighted
essentially non-oscillatory (MPWENO) reconstruction. Furthermore, a new iterative
method for finding exact solutions of the Riemann problem in non-linear elasticity is pre-
sented. Access to exact solutions enables an assessment of the performance of the numer-
ical techniques with focus on the resolution of the seven wave structure. The governing
model represents a special case of a more general theory describing additional physics such
as material plasticity. The numerical scheme therefore provides a firm basis for extension
to simulate more complex physical phenomena. Comparison of exact and numerical solu-
tions of one-dimensional initial values problems involving three-dimensional deforma-
tions is presented.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The Riemann problem is an initial value problem consisting of two uniform conditions where the state varies discontin-
uously. Depending on how these uniform states are chosen the Riemann problem for the equations of non-linear elasticity
can result in up to six genuinely non-linear waves propagating away from a central linearly degenerate contact. Between
each wave the state is uniform and hence the wavespeeds are constant, leading to a self similar profile of up to eight piece-
wise constant states.

Solution of the Riemann problem has gained significant importance in numerical schemes for systems of hyperbolic con-
servation laws. Considering a computational mesh with piecewise constant data stored at each discrete point, Godunov pro-
posed solving Riemann problems locally at each intercell boundary. What has now become commonly known as the
Godunov method permits numerical computation of more general Cauchy problems where discontinuities may exist in
the solution. For such problems these shock-capturing schemes are popular since they avoid the need to explicitly include
artificial viscosity to ensure convergence to the correct weak solution.

Here, the interest is in developing Godunov methods for solid media in the Eulerian reference frame. Although more com-
plicated than Lagrangian schemes, Eulerian formulations are better suited for modelling problems involving discontinuous
waves and large deformations. Several authors have proposed Eulerian schemes based on solving Riemann problems for so-
lid materials. In [11,24] approximate one-dimensional Riemann solvers are presented for two-dimensional deformations.
. All rights reserved.
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Godunov methods for elastic–plastic media are demonstrated in [27,29] for one-dimension, in [28] for two-dimensions, and
in [13] for three-dimensions.

The application of these numerical tools for solid mechanics is made possible by formulations of the governing laws as
first-order hyperbolic systems of conservation laws in the Eulerian reference frame. This is as opposed to the more tradi-
tional second-order systems employed in elasticity. Here, the formulation proposed by Godunov and Romenski [8] is used,
where the state of solid media is governed by conservation laws for mass, momentum, strain and energy, in conjunction with
compatibility constraints (see also [17]). It should be mentioned that solution of the Riemann problem in non-linear elastic-
ity is a stepping stone towards developing numerical schemes for elastic–plastic media. Indeed it is shown in [8,19] that
plasticity can be governed by the addition of higher terms and thus with no change to the Riemann solver employed for
the convective fluxes. Another interesting approach is proposed in [10] where the elastic potential is modified to obey
Von-Mises yield criterion.

In this study the motivation for developing an exact solution to the Riemann problem in non-linear elasticity is not for use
within a numerical scheme, but rather as a tool for validating approximate techniques. In general, exact solutions of Riemann
problems are iterative processes and their use in a numerical scheme would constitute an expensive overhead. Instead one
can find approximate solutions, or solve exactly an approximation of the governing theory. Indeed in those studies men-
tioned above the numerical schemes employ approximate Riemann solvers. Titarev et al. [24] recently studied several
approximate solvers for non-linear elasticity. It was shown that, except in some special circumstances, such approximate
methods are sufficient to obtain high accuracy solutions.

Few authors have considered exact solutions of the Riemann problem in non-linear elasticity. In all but one of these stud-
ies solutions are obtained only for the special case of uniaxial deformations. Garaizar [6] presents a theoretical evaluation of
the equations of elasticity and proposes an algorithm for uniaxial deformations; however, no numerical results are given.
Titarev et al. [24] also solve the Riemann exactly for uniaxial deformations. Miller [15] proposed an exact iterative method
for the solution of the Riemann problem of arbitrary hyperbolic systems of conservation laws, using the equations of non-
linear elasticity as an example. Here, they appear to be the first to consider exact solutions for three-dimensional deforma-
tions. Their results highlighted large discrepancies between exact and approximated solutions of initial value problems and
stands as an example of the need for exact solutions.

The purpose of the present work is to apply certain well established high-order shock-capturing methods to the aug-
mented one-dimensional equations of non-linear elasticity. The model of Godunov and Romenski [8] is considered and a
characteristic tracing based approximate Riemann solver is extended to consider three-dimensional deformations, based
upon the work in [24]. In comparison to the one-dimensional system for two-dimensional deformations, this requires the
evaluation of an additional six equations, and an examination of the eigensystem reveals a total of seven characteristic fields.
Similar wave profiles are found in magnetohydrodynamics (MHD) and in [1] it is shown that improved wave resolution can
be achieved via high-order monotonicity preserving weighted essentially non-oscillatory (MPWENO) reconstruction. In par-
ticular these have benefits for such problems where slow shocks proceed a faster moving wave, where the former can other-
wise be insufficiently resolved. In order to assess these methods for non-linear elasticity exact solutions are desirable.

The proposed exact solution method requires systematic evaluation of the solutions across each characteristic wave. It is
assumed that the Riemann problem solution comprises a central linearly degenerate contact wave, with all other waves
being genuinely non-linear. In [15], where a similar approach is adopted, it is reported that these assumptions limit the
applicability of the algorithm as a result of certain conditions, such as lack of genuine non-linearity, that can occur for
non-linear elastic materials. Analysis of these conditions is not repeated here, but a discussion of the impact on the range
of applicability of the scheme proposed in this paper is given in Section 3.6. Concisely, as a result of these conditions the
present proposed exact solution procedure is valid only for cases where all seven waves are distinct.

The rest of the paper proceeds as follows. In Section 2 the governing equations are presented along with an analysis of the
characteristic decomposition. In Section 3 details are given of an exact iterative solution to the Riemann problem, whilst Sec-
tion 4 outlines a numerical scheme. A comparative analysis between exact and numerical methods using example testcases
is presented in Section 5 and finally conclusions are drawn in Section 6.

2. Governing theory

To describe processes in condensed media in the Eulerian reference frame the model of Godunov and Romenski [7] (and
more recently [8]) is used. Here, the state of a solid is characterised by the elastic deformation gradient Fij ¼ @xi=@x0j

(where
xi and x0j

denote the fixed spatial coordinates and material coordinates of the unstressed reference state respectively), veloc-
ity ui, and entropy S. The complete three-dimensional system forms a hyperbolic system of conservation laws for momen-
tum, strain, and energy. In Cartesian coordinates
@qui

@t
þ @ðquiuk � rikÞ

@xk
¼ 0 ð1aÞ

@qFij

@t
þ @ðqFijuk � qFkjuiÞ

@xk
¼ 0 ð1bÞ

@qE
@t
þ @ðqukE� uirikÞ

@xk
¼ 0 ð1cÞ
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Here, q is the density, r the stress, E ¼ ðE þ juj2=2Þ the total energy, with E the specific internal energy. Repeated indices de-
note summation (see Appendix A). The system is closed by analytic formulae for the specific internal energy in terms of the
parameters of state
E ¼ EðF11; F12; . . . ; F33; SÞ: ð2Þ
Density, temperature and the stress tensor are given by
q ¼ q0=det jFj; ð3Þ

T ¼ @E
@S
; ð4Þ

rij ¼ qFik
@E
@Fjk

ð5Þ
where q0 denotes the density of the initial unstressed medium.
Using (14) it is possible to show that the combination of equations governing the conservation of strain conserve mass, by

means of recovering the continuity equation
@q
@t
þ @qua

@xa
¼ 0: ð6Þ
Further this equation can be used in the development of numerical methods in place of one equation for deformation gra-
dient in order to provide conservation of mass (see [24]).

It is remarked that using the form of the potential (2) does not guarantee that the stress tensor, Eq. (5), is symmetric. It is
first necessary to discus the frame indifference of the internal energy density. This point is discussed in detail in [16] where it
is shown that in order to satisfy frame indifference the internal energy must instead be expressed in terms of some symmet-
ric strain tensor. Using for example the Finger tensor G ¼ F�T F�1, then one might instead have
E ¼ EðG11; G12; . . . ;G33; SÞ: ð7Þ
It is shown in [8] that in terms of the Finger strain tensor the Murnaghan formula, Eq. (5), becomes
rij ¼ �2qGik
@E
@Gkj

: ð8Þ
In [8] it is also pointed out that the symmetry of Eq. (8), using (7) still remains unclear, but that this can easily be established
on the grounds that the internal energy density for a hyperelastic isotropic medium is not an arbitrary function of G but
rather depends on the invariants I1 ¼ trðGÞ; I2 ¼ 1

2 ½ðtrðGÞÞ2 � trðG2Þ�; I3 ¼ detjGj.
The equations for deformation gradient satisfy three compatibility constraints
@qFkj

@xk
¼ 0; j ¼ 1;2;3; ð9Þ
which hold for any time t > 0 if true for the initial data at t ¼ 0. In fact, these constraints are a consequence of six compat-
ibility conditions for the Lagrangian deformation gradient f ¼ F�1 which are derived as follows. First, consider the evolution
equations for fij (see [8])
@fij

@t
þ uk

@fij

@xk
þ fik

@uk

@xj
¼ 0:
By introducing the tensor Bij ¼ fikbkj=det F, where
b1i ¼
@fi3

@x2
� @fi2

@x3
; b2i ¼

@fi1

@x3
� @fi3

@x1
; b3i ¼

@fi2

@x1
� @fi1

@x2
;

one can obtain as a consequence of the above equation for fij
@Bij

@t
þ uk

@Bij

@xk
¼ 0: ð10Þ
From these results it follows that if Bij ¼ 0 for the initial data, then it holds for any time. Therefore, because bij ¼ FikBkj det jFj
and the tensor Fik is positive defined, the same conclusion can be drawn for bkj. Thus, six compatibility conditions for
Lagrangian elastic deformations are obtained:
@fmn

@xl
� @fml

@xn
¼ 0 ð11Þ
If these compatibility conditions hold for initial data, then they hold for any time. Finally, the following relation can be
obtained:
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@qFkj

@xk
¼ qFijFnm

@fmn

@xi
� @fmi

@xn

� �
; j ¼ 1;2;3; ð12Þ
from which it can be concluded that the three constraints (9) are a consequence of six compatibility constraints (12).
The compatibility constraints (9) play an integral part in the necessary characteristic analysis. It is reported in [26] that for

a similar Eulerian formulation of equations for non-linear elastic materials, a characteristic analysis of the quasi-linear sys-
tem deduced directly by differentiation of the conservative equations produces characteristic speeds which are unphysical
and leads to spurious eigenvector deficiency. The conservation laws used in [26] are based upon the inverse of the deforma-
tion gradient, fij, rather than the present formulation in terms of Fij. Direct reduction of the conservative system (1) too leads
to unphysical wave families. To overcome this, certain derivatives in the quasi-linear equations for Fij obtained from Eq. (1b)
can be replaced using the constraints (9). An alternative approach which elucidates the necessary use of the constraints and
arrives at the same result is to replace Eq. (1b) with the following modified form derived in [19]
@qFij

@t
þ @ðqFijuk � qFkjuiÞ

@xk
¼ �uibj; ð13Þ
where bj ¼ @qFkj=@xk. If deformations are elastic then bj ¼ 0 for all time if true for the initial conditions, and Eqs. (1b) and
(13) are equivalent. Direct reduction of Eq. (13) to quasi-linear form gives the following equations for Fij:
@Fij

@t
þ uk

@Fij

@xk
� Fkj

@ui

@xk
¼ 0: ð14Þ
which leads to physically correct wavespeeds and a complete set of independent eigenvectors. Thus, equations for the defor-
mation gradient can be considered in two different equivalent forms: conservative and non-conservative. The conservative
form is used below for studying discontinuous solutions (shock and contact waves). As a result of the consequences dis-
cussed above the non-conservative form, Eq. (14), is used to obtain eigenfunctions required for the construction of rarefac-
tion waves.

It is remarked that similar modified form of the governing system, Eq. (13), is performed in [13] for the equations in terms
of fij. Not only is this done for the purpose of obtaining physically correct wavespeeds for the quasi-linear system, but also
with the aim of improving the numerical algorithm. It is indicated that by performing a numerical discretization of (1) one
can expect not to be finding a solution U but instead some modification of it, say Umod, as a result of truncation errors. In turn
it cannot be guaranteed that Umod satisfies the compatibility constraints, which by definition if equal to zero in the initial
conditions should remain equal at all other times. Further it is pointed out that the subsequent effects of errors remain unre-
solved in their entirety for equations of this form. It is suggested in [13] that Eq. (13) should instead be solved, i.e. a single set
of transport equations, leaving only the question of whether the solution complies with the original system (1), and (9).
Whilst these complications do not arise in the one-dimensional system studied in this paper, since @ðqF1jÞ=@t ¼ 0, the meth-
ods are developed in the prospect of later application to multi-dimensional problems, in which case it is likely that these
modifications are necessary.

The ensuing numerical methods are derived on the basis of the augmented one-dimensional system (taking k ¼ 1 in Eqs.
(1a),(1c),(13)), which can be written in matrix form as
@U
@t
þ @F
@x
¼ �Sc: ð15Þ
with
U ¼

qu

qFT e1

qFT e2

qFT e3

qE

0BBBBBB@

1CCCCCCA; F ¼

u1qu� re1

0
u1qFT e2 � u2qFT e1

u1qFT e3 � u3qFT e1

u1qE� ðruÞe1

0BBBBBB@

1CCCCCCA; Sc ¼

0
0

u2
@
@x qFT e1

u3
@
@x qFT e1

0

0BBBBBB@

1CCCCCCA;
where ek are the Cartesian unit vectors and MT denotes the transpose of the vector or tensor M. By introducing the vector of
primitive variables W ¼ ðu; FT e1; FT e2; FT e3; SÞ, Eq. (15) can be rewritten as a quasi-linear system
@W
@t
þA @W

@x
¼ 0; ð16Þ
with the Jacobian
A ¼

u1I �A11 �A12 �A13 �B1

�FT E11 u1I 0 0 0
�FT E12 0 u1I 0 0
�FT E13 0 0 u1I 0

0 0 0 0 u1

0BBBBBB@

1CCCCCCA: ð17Þ
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Here, Eij represents the unit dyads Eij ¼ ei � eT
j ; I is the identity matrix, and the following coefficients are defined
A1b
ij ¼

1
q
@r1i

@Fbj
; B1

i ¼
1
q
@r1i

@S
: ð18Þ
If k denotes the wavespeeds then the characteristic polynomial for (17) ðjA � kIj ¼ 0Þ has the form
ðu� kÞ7 det jX� ðu� kÞ2Ij ¼ 0;
where X is the acoustic tensor
Xij ¼ A1j
ik F1k: ð19Þ
Due to the hyperbolicity of the system (15), the tensor X is positive definite and thus by defining the diagonal matrix of po-
sitive eigenvalues D ¼ diag

ffiffiffiffiffiffiffiffi
kac1

p
;
ffiffiffiffiffiffiffiffi
kac2

p
;
ffiffiffiffiffiffiffiffi
kac3

p� �
, with kac3 6 kac2 6 kac1 , and the orthogonal matrix Q, (19) can be rewritten
X ¼ Q�1D2Q : ð20Þ
The diagonal matrix of eigenvalues is thus given by (assuming the order u1 �
ffiffiffiffiffiffiffiffi
kac1

p
6 u1�ffiffiffiffiffiffiffiffi

kac2

p
6 . . . 6 u1 6 . . . 6 u1I þ

ffiffiffiffiffiffiffiffi
kac1

p
)

K ¼ diagðu1I � D; u1I; u1I; u1; u1I þ pDpÞ; ð21Þ
where the permutation matrix p is defined as
p ¼
0 0 1
0 1 0
1 0 0

0B@
1CA;
with the matrix of left-eigenvectors
L ¼

DQ QA11 QA12 QA13 QB1

0 1
F11
ðF12E11 þ F13E21Þ � E12 � E23

1
F11
ðF12E31Þ � E32 0 0

0 0 1
F11
ðF13E11Þ � E13

1
F11
ðF12E21 þ F13E31Þ � E22 � E33 0

0 0 0 0 1
pDQ �pQA11 �pQA12 �pQA13 �pQB1

0BBBBBBB@

1CCCCCCCA: ð22Þ
Using the assumption that the right-eigenvectors are orthonormal to the left ðRL ¼ IÞ
ð23Þ
with
T1 ¼ X�1ðA11E21 þ A11E32 þ A12E23Þ;
T2 ¼ X�1ðA12E31 þ A13E22 þ A13E33Þ:
Using these results it is seen that there are seven linear degenerate (ri � rwki ¼ 0, where ri denotes the ith column vector
of R) waves with equal velocity u1, and six genuinely non-linear ðri � rwki–0Þ waves with velocities u1I � D and u1I þ D.

Here, the eigenvectors have been written in compact form. Since they play a fundamental role in solving the Riemann
problem both exactly and approximately, and to improve reproducibility, the expanded matrices are presented in Appendix
A. Evaluating the acoustic tensor, (19), analytically is relatively straightforward but cumbersome, requiring evaluation of a
large number of derivatives to formulate the coefficients (18). Computation of the diagonal matrix D and orthogonal matrix Q
is performed numerically using those methods in [22].



P.T. Barton et al. / Journal of Computational Physics 228 (2009) 7046–7068 7051
3. Exact Riemann problem solution

In this section an exact iterative method is derived for the solution of the Riemann problem: solutions of the system (15)
subject to the initial conditions
Fig. 1.
Sj;1 6 j
respect
Uðx; t ¼ 0Þ ¼
UL if x 6 x0

UR if x > x0

�
; ð24Þ
where x0 is the position of the discontinuity in the initial data. Depending on how the initial states in (24) are chosen the
solution of the Riemann problem for non-linear elasticity can consist of up to eight constant states separated by seven dis-
tinct waves. These are from left to right: a longitudinal wave, two transverse shear waves, a contact wave, two more shear
waves and a further longitudinal wave (Fig. 1).

Considering all waves to be distinct, then the solution across each is uniquely determine once one state either side and the
wavespeed are known. To elaborate, given an estimate of the states on the left and right in the initial data, (24), and also for
the intermediate six constant states Uj;1 6 j 6 6, then the type of wave present can be determined by analysing for each the
inclination of characteristics
jkþj < jk�j ) shock wave
jkþj > jk�j ) rarefaction wave

�
ð25Þ
Here k is the respective characteristic speed, whilst � indicates the state from which this is analysed: for any quantity /;/þ

denotes evaluation from the upstream state and /� denotes evaluation from the downstream state. This notation shall be
adopted throughout. The wavespeeds, Sj;1 6 j 6 6, are determined differently for either shocks or refractions.

On this basis then, given the wave types and speeds the inner most states either side of the contact wave (U3 and U4 in
Fig. 1) can be computed. Treating the collective waves to the left and to the right of the contact independently, the solution
across the three waves to the left are first evaluated, and then likewise for those to the right. The found states must satisfy by
definition certain continuity conditions across the contact. Any residual error then is reflective of errors in the estimates of
the wavespeeds. For each iteration the residual errors can be used to obtain improved estimates of the wavespeeds until
some convergence criteria is satisfied.

It is intuitive to now consider solutions for each of the non-linear waves will, before summarising the implementation.

3.1. Contact waves

Consider a discontinuity propagating with velocity D. For the system (15) the Rankine–Hugoniot relations connecting the
left and right states are given by
½U�D ¼ ½F�; ð26Þ
where for any quantity /; ½/� ¼ /� � /þ. An isolated contact discontinuity is defined by the condition that the normal veloc-
ity component does not change across it
uþ1 ¼ u�1 ¼ D:
From (15) and taking into account the compatibility conditions (9), the following equalities are obtained:
½u� ¼ ½qFT e1� ¼ ½r11e1� ¼ 0: ð27Þ
The inner most states either side of the contact wave, U3 and U4, are uniquely determined by the initial left and right states in
(24), and estimates of the wavespeeds Sj;1 6 j 6 6. In turn these inner states should satisfy those continuity conditions (27).
Therefore using (27) six non-linear equations can be written for the six unknown wavespeeds
RcðS1; S2; . . . ; S6Þ ¼
uþðU3Þ � u�ðU4Þ

rþðU3Þe1 � r�ðU4Þe1

� �
¼ 0: ð28Þ
x

S
t

U

1 SSSSS2 3 4 5 6Contact Wave

U U U U U U1 2 3 4 5 6

U RL

Illustration of the Riemann problem for non-linear elasticity in space-time. The wavespeeds for the six genuinely non-linear waves are denoted by
6 6. Between each wave the state is constant denoted by Uj;1 6 j 6 6. The states UL and UR correspond to the initial left and right conditions,

ively.
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In general Eq. (28) will not be satisfied by the initial guess, and instead it is expected that jRcj > 0. Therefore (28) can be
solved for improved estimates of the wavespeeds using Newton’s method
Sn ¼ Sn�1 � ð@Rc=@SÞ�1Rc: ð29Þ
The six-by-six Jacobian in (29) can be evaluated using perturbations of each wavespeed. A second-order approximation can
be written
@Rci

@Sj
� Rci

ðSj þ eÞ � Rci
ðSj � eÞ

2e
ð30Þ
Experience shows that choosing e ¼ 1� 10�6 is sufficient to obtain converged solutions.
3.2. Shock waves

Consider a shock wave propagating with a velocity S. Based upon the Rankine–Hugoniot relations (26) then
Rs ¼ FðUþÞ � FðU�Þ � SðUþ � U�Þ ¼ 0: ð31Þ
Following the method of solving for the upstream state Uþ from the known downstream state U� and shock speed S, it is
deduced that (31) is a set of non-linear relations in terms of Uþ. Using Newton’s method then
U�;n ¼ U�;n�1 � ð@Rs=@U�Þ�1Rs: ð32Þ
If (32) is being solved from the left then S ¼ Sj;U
þ ¼ Uj�1 with U0 ¼ UL, giving Uj ¼ U�;1 6 j 6 3. Similarly for the right

S ¼ Sj;U
þ ¼ Ujþ1 with U7 ¼ UR, giving Uj ¼ U�;4 6 j 6 6.

3.3. Rarefaction waves

For rarefaction waves the theory presented in [12] is followed. If rj denotes the jth column vector in (23) then across a
rarefaction wave
@W
@n
¼ rjðWÞ

rjðWÞ � rwkjðWÞ
; ð33Þ
where kjðW�Þ 6 n ¼ x=t 6 kjðWþÞ and rw denotes the gradient operator with respect to components of the vector of prim-
itive variables, W.

An important consideration when solving (33) is that the solution is parameterised by the characteristic evaluated from
the upstream state, kðW�Þ, and solving (33) otherwise would lead to a multi-valued function [12]. In the solution of the Rie-
mann problem it is assumed that for each genuinely non-linear wave the corresponding downstream state is known. Solving
across rarefaction waves becomes therefore an iterative process. It is convenient to consider this solution for each side of the
contact wave: for waves on the left solve
Rr ¼Wj�1 �WþðWjÞ ¼ 0; ð34Þ
and likewise for the right
Rr ¼Wjþ1 �WþðWjÞ ¼ 0; ð35Þ
where in each case WþðWjÞ denotes solution of (33) using an estimate of the upstream state W� ¼Wj. Similar to (32) for
shock waves, Eqs. (34) and (35) can be solved using Newton’s method
W�;n ¼W�;n�1 � ð@Rr=@W�Þ�1Rr : ð36Þ
As an initial guess the last known solution of Wj can be taken.
Eq. (33) can be integrated using the classical fourth-order Runge–Kutta method. It is necessary in some cases to subdivide

the integral into n parts; experience shows for those testcases here n ¼ 10 is sufficient. The step size can be taken as
Dnj ¼ kjðWj�1Þ � Sj;1 6 j 6 3, for the left and Dnj ¼ kjþ7ðWjþ1Þ � Sj;4 6 j 6 6, for the right. An additional complexity of solving
across rarefaction waves is the evaluation of the right-hand-side of (33). Taking as an example the wave k ¼ u1 �

ffiffiffiffiffiffiffiffi
kack

p
,

expanding the denominator in (33) gives
rk � rwðu1 � DkkÞ ¼ ðQ�1D�1Þ1k �
X3

j;m¼1

F1jðQ�1D�2Þmk
@Dkk

@Fmj
: ð37Þ
When computing the diagonalisation of the acoustic tensor, Eq. (20), it is more convenient to do so numerically rather than
derive lengthy expressions for the corresponding third-order polynomial. This omission of closed form solutions for the
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acoustic wavespeeds means some other approach is required if the derivatives with respect to deformation in Eq. (37) are to
be evaluated analytically. The method in [15] provides a convenient way to find analytic solutions for each of these terms.
Considering the diagonalisation of the acoustic tensor, Eq. (20), the following equalities are obtained
rFðXQ�1Þ ¼ rFðQ�1D2Þ;

rFðXÞQ�1 þKrFðQ�1Þ ¼ rFðQ�1ÞD2 þ Q�1rFðD2Þ;

QrFðXÞQ�1 þ D2QrFðQ�1Þ ¼ QrFðQ�1ÞD2 þ IrFðD2Þ;
where rF denotes the gradient operator with respect to deformation. Taking only the diagonal components
rF D2
kk

� 	
¼ Q kmrFðXmjÞQ�1

jk : ð38Þ
Evaluating derivatives of the acoustic tensor, although rather lengthy, is relatively straightforward.

3.4. Solution procedure

Here, the implementation is summarised

Step 1: Initialise solution. Given an initial estimate of the piecewise constant states Uj;1 6 j 6 6, between each of the non-
linear waves, and the initial left and right states UL;UR in (24), one determines the wave types by assessing the
inclination of characteristics (25). Once the wave types are known proceed to evaluate an initial estimate of the
wave speeds Sj;1 6 j 6 6 using Sj ¼ S from (31) for a shock, and Sj ¼ kj;1 6 j 6 3, or Sj ¼ kjþ7;4 6 j 6 6, from
(21) for left and right waves respectively in the case of a rarefaction.

Step 2: Compute residual errors. Given an estimate of the wavespeeds Sj;1 6 j 6 6 and the left and right states UL;UR, and
knowing the wave types, systematically find the solution U� across each wave (in each case the corresponding
downstream state Uþ is known). Starting with the left hand state UL move upstream solving across each wave
for Uj ¼ U�;1 6 j 6 3, taking Uþ ¼ Uj�1, with U0 ¼ UL. Continue this procedure until a solution is found for the
state immediately left of the contact wave U3. Likewise evaluate upstream starting from the right initial state
UR, where for each wave take Uþ ¼ Ujþ1;1 6 j 6 3, with U7 ¼ UR, until a solution is found for the state immedi-
ately to the right of the contact wave U4. Thus evaluate the truncation errors, (28), in continuity across the con-
tact wave.

Step 3: Estimate new wavespeeds. If from Step 2
P6

i¼1jRci
j > �, where � is the desired tolerance, then use (29) to improve

the estimates of the wavespeeds. Evaluate the Jacobian in (29) using small perturbations of each wavespeed and
re-evaluating in each case Step 2. With the new wavespeeds again re-evaluate Step 2 until

P6
i¼1jRci

j < � is
satisfied.

Experience shows that with a good initial guess the solution will converge in three to four iterations to a tolerance ofP6
i¼1jRci

j < 10�8.

3.5. Provision of the initial guess

The final detail of the exact solution method is the specification of initial estimates of the states Ui;1 6 i 6 6. One choice
would be to use the linearised solver proposed in the next section. In most cases a linearised solution is sufficient, but in
some special cases will fail (see [24]). In such circumstances one could instead interpolate a solution from the results of
any scheme such as Lax-Friedrich, which approximates directly the governing model rather than solves exactly an approx-
imation of it, run on a sufficiently fine grid. Such a method has no knowledge of the characteristic structure and although
diffusive (hence the need for fine meshes, especially where amplitudes of waves or the difference in speeds of adjacent
waves is small) one can be assured that the solution is a faithful representation of the exact solution. The method of solving
the Riemann problem exactly hinges on this ability to obtain a good initial guess of the states either side of each of the waves
in order to determine the wavetypes.

3.6. Limitations of the exact solver

The proposed method of obtaining exact solutions to Riemann problems in non-linear elasticity is limited to those cases
where all waves are distinct as a result of the following assumptions that are made: all waves are genuinly non-linear except
for the central contact wave which is linearly degenerate; the wave type is determinable by analysing the inclination of
characteristics. In [15] conditions are discussed where these assumptions would cause the method to fail to reach an exact
solution. For example it is reported that for the case where transverse wavespeeds coincide, which for an isotropic hyper-
elastic material occurs when the internal energy density resides on the reference hydrostat, there is a lack of genuine
non-linearity. Modifications are proposed in [15] that overcome these difficulties and restore the generality of the scheme.
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These modifications have not been implemented in the present study, hence the limitation to cases where all waves are dis-
tinct. The sought solutions cannot therefore be considered general, but do provide adequate tests for examining certain cap-
abilites of the proposed numerical algorithms discussed next.

4. Numerical scheme

The system (15) is solved numerically using a finite volume discretisation with cell averaged data stored at the cell cen-
tres, denoted by the indices i. Discretisation of the time derivatives is achieved by re-expressing (15) as
d
dt

UiðtÞ ¼ LiðUÞ; ð39Þ
with
LiðUÞ ¼ �
FðUðxiþ1=2; tÞÞ � FðUðxi�1=2; tÞÞ

Dx
; ð40Þ
where iþ 1=2 denotes cell boundaries and UiðtÞ is the space average of the solution in the ith cell at time t
UiðtÞ ¼
1

Dx

Z xiþ1=2

xi�1=2

Uðx; tÞdx:
Eq. (39) is integrated using the third-order TVD Runge–Kutta scheme [21]
Uð1Þi ¼ Un
i þDtLiðUnÞ;

Uð2Þi ¼ Un
i þ Dt

4 ½LiðUnÞ þ LiðUð1ÞÞ�;
Unþ1

i ¼ Un
i þ Dt

6 ½LiðUnÞ þ LiðUð1ÞÞ þ 4LiðUð2ÞÞ�;
ð41Þ
where n denotes the current iteration. The global timestep is found from
Dt ¼ CFL
Dx

max ju1j þ
ffiffiffiffiffiffiffiffi
kac1

p� � ;

where 0 6 CFL 6 1 is an adjustable scaler parameter used to control the timestep so as to satisfy the Courant–Friedrichs–
Lewy condition.

In the numerical method the convective flux terms in (40) are discretised using the well known method of Godunov.
Therefore solution of a Riemann problem is required at the boundaries of each cell in the computational mesh. Exact solu-
tions to these problems following the procedure outlined in the preceeding section, are somewhat complex and expensive. In
general one can instead apply an approximate solution method, such as those described in [25,4]. Titarev et al. [24] examined
the performance of a number of different approximate Riemann solvers for the equations of non-linear elasticity. They found
that a linearised solver based upon characteristic tracing yielded a good balance between accuracy and cost. It also has the
advantage of recognising all waves in the solution and is shown to exceed the ability of some alternative upwind methods in
resolving delicate features such as contact discontinuities. Although approximate Riemann solvers based upon linearising
the governing equations have well known drawbacks, such as the production of entropy violating shock waves where there
are sonic rarefactions, it is pointed out in [24] that these conditions are rare in solid media. For all intended purposes a char-
acteristics based method can be expected to perform well.

4.1. Flux approximation

Consider the non-linear system (16). If it is assumed that the Jacobian A is evaluated at some constant state cW such thatbA ¼ AðcW Þ consists entirely of constant coefficients, then in turn the corresponding eigenvalues and eigenvectors are con-
stant, bK ¼ KðcW Þ; bL ¼ LðcW Þ; bR ¼ RðcW Þ. If Q ¼ bLW is defined as the vector of characteristic variables, then (16) can be rewrit-
ten in the decoupled characteristic form
@

@t
þ k̂j

@

@x

� �
Qj ¼ 0; 1 6 j 6 13: ð42Þ
Since, from (42), Qj is invariant along the characteristic of slope bkj, the solution for any Cauchy problem is simply
Qjðx; tÞ ¼ QjðWðx� k̂jtÞÞ, which gives
Wðx; tÞ ¼ bRQðx; tÞ: ð43Þ

In order to maintain high-order accuracy it is necessary to reexpress the invariants in terms of conserved variables. The
extension is based upon the ideas in [5,2] for the compressible Euler equations. The resultant Riemann solver has also been
successfully applied to incompressible fluid dynamics [4,3]. The derivation here follows the tensorial approach presented in
[20]. From (42) the invariants @Q ¼ bL � @W can be transformed simply as @Q ¼ bLbC � @U, where bC 	 ð@cW=@ bUÞ. Partial derivatives
of the velocity vector and deformation tensor can be expressed in terms of partial derivatives of conserved variables according
to
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@u ¼ 1
q
ð@ðquÞ � u@qÞ; ð44Þ

@F ¼ 1
q
ð@ðqFÞ � F@qÞ; ð45Þ
For entropy (from (2) S ¼ SðE; F11; F12; . . . ; F33Þ)
@S ¼ dS
dE @E þ

X3

i;j¼1

dS
dFij

@Fij: ð46Þ
Using the definition of total energy
@ðqEÞ ¼ @ðqEÞ � ui@ðquÞi þ
1
2
juj2@q;
in (46) gives
@S ¼ 1
q

dS
dE @ðqEÞ � ui@ðquÞi þ

1
2
juj2@q� E@q

� �
þ
X3

i;j¼1

dS
dFij
ð@ðqFÞij � Fij@qÞ

 !
: ð47Þ
Since density is a function of det jqFj;q2 ¼ detjqFj=q0
@q ¼ 1
2

X3

i;j¼1

F�T
ij @Fij: ð48Þ
Partial derivatives with respect to density then in (44), (45) and (47) can be replaced with (48). In matrix form
C ¼ � 1
2q

�2I u� eT
1F�T

� 	
u� eT

2F�T
� 	

u� eT
3F�T

� 	
0

0 ðFT e1Þ � eT
1F�T

� 	
� 2I ðFT e1Þ � eT

2F�T
� 	

ðFT e1Þ � eT
3F�T

� 	
0

0 ðFT e2Þ � eT
1F�T

� 	
ðFT e2Þ � eT

2F�T
� 	

� 2I ðFT e2Þ � eT
3F�T

� 	
0

0 ðFT e3Þ � eT
1F�T

� 	
ðFT e3Þ � eT

2F�T
� 	

ðFT e3Þ � eT
3F�T

� 	
� 2I 0

2 dS
dE uT �2 dS

deT
1F
� eT

1F�T T3 �2 dS
deT

2F
� eT

2F�T T3 �2 dS
deT

3F
� eT

3F�T T3 �2 dS
dE

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; ð49Þ
with
T3 ¼
dS
dE

1
2
juj2 � E

� �
�
X3

i;j¼1

dS
dFij

Fij:
The inverse of (49) is given by
C�1 	 @U
@W
¼ �q

�I u� eT
1F�T

� 	
u� eT

2F�T
� 	

u� eT
3F�T

� 	
0

0 ðFT e1Þ � eT
1F�T

� 	
� I ðFT e1Þ � eT

2F�T
� 	

ðFT e1Þ � eT
3F�T

� 	
0

0 ðFT e2Þ � eT
1F�T

� 	
ðFT e2Þ � eT

2F�T
� 	

� I ðFT e2Þ � eT
3F�T

� 	
0

0 ðFT e3Þ � eT
1F�T

� 	
ðFT e3Þ � eT

2F�T
� 	

ðFT e3Þ � eT
3F�T

� 	
� I 0

�uT dE
deT

1F
� eT

1F�T 1
2 juj

2 þ E
� 	

dE
deT

2F
� eT

2F�T 1
2 juj

2 þ E
� 	

dE
deT

3F
� eT

3F�T 1
2 juj

2 þ E
� 	

� dE
dS

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: ð50Þ
Thus the solution in terms of conserved variables becomes
Uðx; tÞ ¼ bC�1bRQcðx� k̂tÞ: ð51Þ
where Qc ¼ bLbC � U.
On a computational mesh these linearised problems are solved at each intercell boundary, iþ 1=2. Locally then one is

solving exactly an approximation of the non-linear system (15). There is no set way in which the constant state cW iþ1=2

should be chosen to evaluate the coefficients. Here, an arithmetic mean of the adjoining left and right cell centre states is
used
cW iþ1=2 ¼
1
2
ðWi þWiþ1Þ: ð52Þ



x

3c

b

A convenient function that achieves the solution (51) is [5]
Qðxiþ1=2 � k̂j;iþ1=2tÞ ¼ 1
2
þ wj;iþ1=2

� �
QL

iþ1=2 þ
1
2
� wj;iþ1=2

� �
QR

iþ1=2; ð53Þ
with
wj;iþ1=2 ¼
1
2

k̂j;iþ1=2

jk̂j;iþ1=2j þ e
; k̂j;iþ1=2 ¼ kjðcW iþ1=2Þ
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